On a half-discrete Mulholland-type inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a more accurate Hardy-Mulholland-type inequality

By using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard's inequality, a more accurate Hardy-Mulholland-type inequality with multi-parameters and a best possible constant factor is given. The equivalent forms, the reverses, the operator expressions and some particular cases are considered.

متن کامل

A multidimensional discrete Hilbert-type inequality

In this paper, by using the way of weight coecients and technique of real analysis, a multidimensionaldiscrete Hilbert-type inequality with a best possible constant factor is given. The equivalentform, the operator expression with the norm are considered.

متن کامل

A New Multiple Half–discrete Hilbert–type Inequality

By using the way of weight functions and technique of real analysis, a new multiple half-discrete Hilbert-type inequality with the best constant factor is given. As applications, the equivalent forms, operator expressions as well as some reverse inequalities are also considered. Mathematics subject classification (2010): 26D15, 47A07.

متن کامل

On a Half-Discrete Hilbert-type Inequality Similar to Mulholland’s Inequality

*Correspondence: [email protected]; [email protected] 2Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China Full list of author information is available at the end of the article Abstract By using the way of weight functions and Hadamard’s inequality, a half-discrete Hilbert-type inequality similar to Mulholland’s inequality with a best constant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2013

ISSN: 1331-4343

DOI: 10.7153/mia-16-38